Pulse pair beamforming and the effects of reflectivity field variations on imaging radars
نویسندگان
چکیده
[1] Coherent radar imaging (CRI), which is fundamentally a beamforming process, has been used to create images of microscale, reflectivity structures within the resolution volume of atmospheric Doppler radars. This powerful technique has the potential to unlock many new discoveries in atmospheric studies. The Turbulent Eddy Profiler (TEP) is a unique 915 MHz boundary layer radar consisting of a maximum of 91 independent receivers. The TEP configuration allows sophisticated CRI algorithms to be implemented providing significant improvement in angular resolution. The present work includes a thorough simulation study of some of the capabilities of the TEP system. The pulse pair processor, used for radial velocity and spectral width estimation with meteorological radars, is combined with beamforming technique, in an efficient manner, to the imaging radar case. By numerical simulation the new technique is shown to provide robust and computationally efficient estimates of the spectral moments. For this study, a recently developed atmospheric radar simulation method is employed that uses the ten thousand scattering points necessary for the high resolution imaging simulation. Previous methods were limited in the number of scatterers due to complexity issues. Radial velocity images from the beamforming radar are used to estimate the three-dimensional wind field map within the resolution volume. It is shown that a large root mean square (RMS) error in imputed three-dimensional wind fields can occur using standard Fourier imaging. This RMS error does not improve even as SNR is increased. The cause of the error is reflectivity variations within the resolution volume. The finite beamwidth of the beamformer skews the radial velocity estimate, and this results in poor wind field estimates. Adaptive Capon beamforming consistently outperforms the Fourier method in the quantitative study and has been demonstrated to enhance the performance compared to the Fourier method.
منابع مشابه
Adaptive beamforming in row-column addressed arrays for 3D ultrasound imaging
In recent years, to reduce the complexity of implementation, the use of 2D arrays with restricted row-column addressing has been considered for 3D ultrasound imaging. In this paper, two methods of adaptive beamforming based on the minimum variance method are represented in such a way that the computational load is much less than using the full adaptive beamforming method. In both proposed metho...
متن کاملAdaptive Array Processing for Multi-mission Phased Array Radar
As the use of phased array radars becomes more established for weather surveillance, adaptive array processing techniques will become more important to the weather radar community. Such techniques can be applied to phased array radars to improve angular resolution and also to suppress clutter compared to conventional beamforming methods. Thus, enhanced details of weather phenomena can be realiz...
متن کاملPhased array ultrasonic imaging using an improved beamforming based total focusing method for non destructive test
One of the novel ultrasonic phased array based scanning methods for ultrasonic imaging in non-destructive test is total focusing method (TFM). This method employs maximum available information of the phased array elements and leads to an improved defect detection accuracy compared to conventional scanning methods. Despite its high detection accuracy, TFM behaves weak in distinguishing the real ...
متن کاملAssessment of Weighting Functions Used in Oppermann Codes in Polyphase Pulse Compression Radars
Polyphase is a common class of pulse compression waveforms in the radar systems. Oppermann code is one of the used codes with polyphone pattern. After compression, this code has little tolerant against Doppler shift in addition to its high side lobe level. This indicates that the use of Oppermann code is an unsuitable scheme to radars applications. This paper shows that the use of amplitude wei...
متن کاملPhased array ultrasonic imaging using an improved beamforming based total focusing method for non destructive test
One of the novel ultrasonic phased array based scanning methods for ultrasonic imaging in non-destructive test is total focusing method (TFM). This method employs maximum available information of the phased array elements and leads to an improved defect detection accuracy compared to conventional scanning methods. Despite its high detection accuracy, TFM behaves weak in distinguishing the real ...
متن کامل